How much Do you Like My Blogs

Monday 30 January 2012

Blogs of Professor Pranab Kumar Bhattacharya MD(cal) FICpath(ind): achyons is an mathematical Imaginary particle that...

Blogs of Professor Pranab Kumar Bhattacharya MD(cal) FICpath(ind): achyons is an mathematical Imaginary particle that...: Information Community Pranab1 Guidelines Community FAQs User help FAQs Inside guardian.co.uk Comments Clippings Lists Zeitgeist ...

Blogs of Professor Pranab Kumar Bhattacharya MD(cal) FICpath(ind): The cosmic Web, the seed of galaxies- are also ma...

Blogs of Professor Pranab Kumar Bhattacharya MD(cal) FICpath(ind): The cosmic Web, the seed of galaxies- are also ma...: Authors _ : *** Mr Rupak Bhattacharya - . Bsc(cal), Msc(JU), 7/51 Purbapalli, Sodepur, Dist 24 Parganas(north), Kol-110,West Bengal, Indi...

Blogs of Professor Pranab Kumar Bhattacharya MD(cal) FICpath(ind): Theory of Pan-spermia aswell breaking the symmetry...

Blogs of Professor Pranab Kumar Bhattacharya MD(cal) FICpath(ind): Theory of Pan-spermia aswell breaking the symmetry...: Authors_; * Mr. Rupak Bhattacharya-Bsc(cal) Msc(JU) 7/51 Purbapalli, Po-sodepur; Dist 24 Parganas(north), Kol-110,West Bengal, India**Pr...
Copy RightCopy Right of this comment in Journal Science News belongs to Professor Pranab kumar Bhattacharya and his first degree relatives only as per copy right act & rules of Intellectual Property Right Rules 3D/107/1201 a,b/ RDF Copy Right rules/ SPARC copy Right rules-2006/ and Protect intellectual Property Right(PIP) copy right rules of USA-2012.Please do not Infringe and be enough careful for your own safety if you are not direct Blood relation to prof Pranab Kumar Bhattacharya  . No person, No NGOS [ except the authors& first degree relatives]  in the state of West Bengal or in any states of India or in any abroad countries are authorized to use this article, with any meaning full,  scientific sentences or with scientific and meaning full words laid out in this article either in the class room/  or in mass teaching programme including CME  or  in any form what so ever it is with any content of this article or while in writing any book or for his/her personal/ home use, or collective works or for any future Research or implementation as a policy matter or,[ except the authors ]or  by Xeroxing and distributing the article/ or by printing/saving/broadcasting the article from any website of internet services,displayed without proper copy right clearance from the authors or from his family members or future copy right owner by written forms. 

Theory of Pan-spermia aswell breaking the symmetry is however essential for development of life in other worlds in other universes too


 Authors_;

* Mr. Rupak Bhattacharya-Bsc(cal) Msc(JU) 7/51 Purbapalli, Po-sodepur; Dist 24 Parganas(north), Kol-110,West Bengal, India**Professor Pranab kumar Bhattacharya MD(cal) FIC Path(ind); Now Professor&HOD of Pathology At Calcutta School of Tropical Medicine  CR avenue Kol-73 Ex Professor of pathology&HOD RIO,& Institute of Post Graduate Medical Education & Research,244 a AJC Bose Road, Kolkata-20, west Bengal, India **
Miss Upasana Bhattacharya- Student, Mahamayatala, Garia, kol-86,only  daughter of Prof.PK  Bhattacharya***Mr.Ritwik Bhattacharya B.com(cal) Somayak Bhattacharya BHM MSC Student PUSHA,7/51 purbapalli, Po-sodepur Dist 24 parganas(north) , Kolkata-110,West Bengal, India******** Mrs. Dalia Mukherjee BA(hons) Cal, Swamiji Road, South Habra, 24 Parganas(north) West Bengal, India**** Mrs Oaindrila Mukherjee-student ,Swamiji Road, South Habra, 24 Parganas(north), West Bengal, India
Panspermia Theory?
 The big yet unsolved question is “are we alone in this universe?” If and even multi universes are present then is there also chance of development of life in planet or phantasmal in those universe? Paul Devis of Australian center for astrobiology Macquire university retired the claim of astrobiologists that life is cosmic in pattern bound to arise under earth like conditions and likely to spread across the galaxies. He raised first question ‘are we alone in the cosmic eternity” Or life also existed in extraterrestrial planets or atmosphere or in asteroids where from it came through a rocket system, our heavenly mom late Mrs Bani Bhattacharya, of 7/51 Purbapalli, sodepur, 24 Parganas(north) Kol-110,west Bengal, used to tell our brothers and sister in our child hood such peculiar stories? She had auditory hallucination. She had a false belief of Panspermia? People from extra  terrestrial of other galaxies,other planets used to tell her various stories or used to speak with her. Really civilized life  also exist in extraterrestrial planets or atmosphere or other universe? If it was so, on the countless other planets that may circle other sun, in same distances from their sun, as our earth circle our sun in a distance, life may exist. It may exist as organic molecule like carbon molecule based life, as life on our earth [then there the evolutionary pattern would be same as it happened in our earth] or they may be different. Based on other molecule (say silica based, Iron based, sulpher based) with other type of evolutionary system and adaptation to their environment. Francis Crick, the Nobel Laureate for discovering the double Helix structure of DNA molecule, once wrote ostensibly to answer “ Enrico Framis”- another Nobel laureate for his famous question “ …if there are intelligent beings in the galaxy why are they only in earth?” and Crick assessed the hypothesis known as “ Directed Panspermia hypothesis”, that is to say a variant of Arrethenious 19th century theory modified, in that Crick considered “whether life was deliberately planted in earth by some God?” i.e. evolution from extraterrestrial space?. Answer that Francis Crick gave to Enrico  Framis “ ….that life on earth could well have originated elsewhere in the galaxy and that there had been time enough for intelligent beings to evolve elsewhere. A suitable environment and to have dissipated prokaryotic and Eukariotic microorganisms by rocket or asteroid to this planet where life may have developed” Crick however admitted that the theory of “Directed Panspermia” although suffered from possible paucity of evidences.
In the great darkness of Space Time, between stars there are Condensed Dark Matter(composed of gas, dusts, organic matter) with dozens of different kinds of organic molecules. The abundance of these molecules further suggests that stuff of life is everywhere in the cosmos. The possibility of life is on some of thousands of planets in our Milky Way galaxy even or in other galaxies of universe or may be in other universes if there are multi universes as per string theory. Life may never arose some where, on the other hand it may arose and died and or never evolved beyond the simplest form or in some planets there may be life which developed more intelligent civilization, more advanced then human civilization on the surface of earth. The biologists and physicists say that our planet “the Earth” is perfectly suitable one for evolution now. Moderate temperature,   liquid water, Oxygen, Nitrogen in air, green house effect  and so on were helpful for development of life here. We the earthlings are supremely well adapted to this environment, because we grew up here in three-dimensional form from three-dimensional molecule very complex organic molecule DNA/RNA in three dimensional-time on this earth.
In the beginning of our universe,  many says there was the Big Bang, and only physics, the mostly and yet undiscovered laws of universe. Then chemistry came along at milder temperatures; when elementary particles quarks with its color ultimately formed nucleons and then atoms; These united to give more and more complex organic molecules  ever most complex largest molecule on earth the RNA, DNA, enzymes, genes, epegenes which in turn associated into organized aggregates and membranes, defining the most primitive cells out of which life emerged in this planet. CHEMISTRY may be then considered is the science of matter and of its transformations, and LIFE in this planet is its highest form of expression of chemistry. Chemistry and notably supra molecular chemistry thus entertained a double relationship with biology of life in this planet.  The progression from elementary particles to the nucleus, the atom, the molecule, the super molecule RNA and the supra molecular assembly of bio organic represents steps up the ladder of supra intelligence complexity that happened here. Particles interacted to form atoms, atoms to form molecules, molecules to form super molecules and supra molecular assemblies, etc. At each level a novel features appeared that however did not exist at a lower one. Thus a major line of development of chemistry to form life is towards more and more complex systems and the emergence of complexity. The highest level of complexity is that expressed in that highest form of matter, living matter, life, which itself culminated in the human brain, the plasticity of the neural system, epigenesis, consciousness and thought. For this what took the active role is the Darwinian  evolutions  that  might also be brought into parallel with the recent development, via procedures of both chemical synthesis and molecular biology, of molecular diversity methods that combined the generation of large repertoires of molecules with highly efficient various selection procedures , adaptations, conflicts, to obtain products presenting specific properties the techniques of amplification by replication used in these methods would bear relation to the spontaneous generation of the target superstructures by the operation of self processes.
.A further major development along these lines, concerns the design of molecular species displaying the ability to form by self-replication.
With respect to the frontiers of life itself arises three basic questions to my mind which may be today   asked: How it appeared in cosmos? Where are places it appeared? Why it appeared?
 The first concerns the origin of life on  this planet the earth only as we know it, of our biological world. But is it trues only this planet? The second considers the possibility of extraterrestrial life, within or beyond the solar systems, beyond galaxies, or beyond even our universe. The third question wonders why life has taken the forms we know; it has as corollary the question whether other forms of life can (and do) exist: is there “artificial life”?; it also implies that one might try to set the stage and implement the steps that would allow, in a distant future, the creation of artificial forms of life. Such an enterprise, which one cannot (and should not) at the present stage outline in detail except for initial steps, rests on the presupposition that there may be more than one, several expressions of the processes characterizing life. It thus invites to the exploration of the “frontiers of other lifes” and of the chemical evolution of living worlds.
Questions have been addressed about which one may speculate, let one’s imagination wander, perhaps even set paths for future investigations. However, where the answers lie is not clear at present and future chemical research towards ever more complex systems will uncover new modes of thinking and new ways of acting that we at present do not know about and may even be unable to imagine.

 What are the Extraterrestrial contributions for life in this planet?
An excess of L-amino acids was detected in Murchison and Murray, two meteorites of the carbonaceous chondrite class ,although some discrepancies in the reported results remain to be yet resolved. Cronin et al. (1) originally discarded the evidence for small excesses of L-enantiomers in Murchison as controversial and possibly caused by terrestrial contamination. Later, however, they themselves found an enantiomeric excess of various amino acids that have never been reported, or are of limited occurrence, on Earth (2,3). The detection of a significant 15N enrichment in individual amino acid enantiomers from Murchison, when was compared with their terrestrial counterparts, it confirmed that the source of these amino acids was extraterrestrial and not any terrestrial contamination.  Carbonaceous chondrites formed ~4.5 billion years ago (i.e., before the origin of life on Earth). There is still some controversy regarding the actual origin of those meteoritic amino acids (i.e., on the meteorite parent body via Strecker synthesis in liquid water [1,4] or in the interstellar medium followed by incorporation into the parent body [2, 5]. Experiments with interstellar ice analogues have shown that the UV-light–induced synthesis of amino acids was possible under the types of conditions likely to be found in interstellar dust (5, 6). No matter which scenario is the correct one, the finding of an excess of L-amino acids in carbonaceous chondrites strongly suggests that the excess is of extraterrestrial origin and existed in the solar system before the origin of life on Earth.
The experiments further indicated that at least some amino acids do not undergo complete racemization during their residence in space, transit to Earth, atmospheric entry, and surface impact. The {alpha}-methyl amino acids found to exhibit considerable excess of the L-enantiomer in the Murchison meteorite are reportedly quite resistant to racemization (2). Racemization half-lives of meteoritic {alpha}-amino acids, the ones used for protein synthesis in contemporary terrestrial organisms, were calculated from models, taking into account the various environments that such an amino acid was exposed to in space (7). In the temperature range between 150 and 300K, the racemization half-lives varied between amino acids by approximately 5 orders of magnitude, with glutamic acid and iso-leucine predicted to retain an enantiomeric excess much longer than phenylalanine, aspartic acid, and alanine. These calculations suggested that the reported D/L value for glutamic acid in Murchison of 0.3 (8) was close to the original value, whereas that of alanine (D/L = 0.5) could correspond to original values in the range of 0.5 to 0.35 (7 ). Note, however, that others did not observe any enantiomeric excess in alanine (3 ). Other experiments suggested that amino acid racemization at high temperatures, as may be encountered during atmospheric entry and surface impacts of space bodies, would be very rapid (9 ). Incorporation into rocks of a size to prevent their being heating all the way through should, however, overcome this problem. The presence of a variety of amino acids in meteorites raises the further question of whether not only the source of enantiomeric excess in terrestrial amino acids but also possibly the provenance of pre-biotic amino acids themselves was extraterrestrial. Meteorites are actually considered unlikely to have made a significant contribution to the total amount of pre-biotic organics (10, ). In contrast, impacts of carbonaceous asteroids and comets during the period of heavy bombardment 4.5–3.8 billion years ago are thought to have been important sources not just of amino acids but also a variety of prebiotic organic molecules (11, 12). Even greater amounts of organic material are likely to have been accreted from interplanetary dust particles, which are currently contributing ~3.2 x 105 kg year-1 of intact organics. How large a portion of the total inventory of organics on early Earth came from extraterrestrial sources depends on a variety of factors, foremost among them the actual composition of Earth’s early atmosphere and hence the extent of endogenous production. Whereas Miller and Urey assumed a fully reducing early terrestrial atmosphere for their famous experiments, it is now thought that it was non reducing or slightly reducing (12–14). The efficiency of organic synthesis decreases rapidly as a function of the H2/CO2 ratio. It has been calculated that with UV light as the energy source, a yearly production of 2 x 1011 kg organics would have occurred in a reducing atmosphere, whereas only 3 x 108 kg year-1 would be produced in a neutral atmosphere (H2/CO2 = 0.1) (12). Recent experiments suggested that high-energy particles, but not UV light, were able to generate amino acid precursors under mildly reducing conditions (10). The delivery to Earth of large amounts of extraterrestrial carbonaceous compounds, including many of the building blocks of life, might actually fall under a new expanded definition of panspermia (15). Originally, however, the term panspermia referred to the transfer of some form of viable extraterrestrial organism. Theoretically, the transfer of such organisms between planets within our solar system is possible on rocks ejected by large impacts (16). A majority of these ejecta were heated to temperatures that would kill all microbes; however, some remain almost un shocked (17). Further heating during the ascent through the atmosphere of the home planet requires that the ejecta be of a size that prevents heating to 100°C all through, with a diameter of >0.2 m estimated as necessary. Similar heating occurs during the entry into and passage through the atmosphere of the target planet and the landing there. In between, microbes would have to survive thousands of years of travel through space. Space is a very hostile environment in which UV and ionizing radiation, extreme vacuum, and very cold temperatures individually, and even more so in combination, are potentially lethal (10). Theoretical and experimental results indicate, however, that protection from these sterilizing factors may be possible (10). The ability of some bacteria to form spores makes them attractive candidates for extraterrestrial organisms that might have introduced life to Earth (18). Spores represent a dormant state. This offers the advantage of the absence of (detectable) metabolism and high resistance to a variety of physical insults, including those imposed by prolonged space travel. Only a small proportion of spores were found to survive space travel of up to 6 years (i.e., a minute fraction of the actual time they may have to spend in space during transfer between planets [ 18]). A single living organism may be enough to seed life on another planet, however.
Panspermia theories offer the advantage of overcoming the difficulties arising from the shortness of the time interval during which life on Earth must have become established. Life could not have arisen, or would have been destroyed if it did, during the heavy bombardment period that ended about 3.8 Gyr ago. Microfossils and stromatolites indicate that life must have originated more than 3.5 Gyr ago, and evidence of biologically mediated carbon isotope fraction puts the existence of life back even farther, to ~3.8 Gyr ago. This leaves a very narrow window of time for the emergence of terrestrial life and adds some plausibility to scenarios in which a preformed extraterrestrial life form started life on Earth. Ultimately, however, postulating an extraterrestrial origin not just for organic bio molecules but for entire organisms simply shifts the location of the origin of life, without addressing the underlying questions of how life arose and at what point during this process homo chirality became established.
Clearly the questions of life’s origin and the relationship of its emergence to the phenomenon of homochirality are the subject of active investigation. To conclude this review, we are struck by the ‘‘symmetry’’ of some of the possible mechanisms linking these questions and the expressions of these in aspects of biology. Homochirality, a prerequisite of life’s emergence in some scientists’ view, might arise as a consequence of the roles played by cosmology (e.g., by cold dark matter and cold dark energy) and occur at the far edge of galaxies. The conjunction of these (the dark) with our increasing understanding of the processes that control nuclear fusion and supernovas in providing both the building blocks and the energy (the light) to drive life’s processes leads us to conclude with a quote alluding to the symmetry of light and dark. Thus the darkness bear its fruit, and prove itself

Life in other universes- possible with symmetry breaking!
Though a big bang like event happened in the early universe, universe spent a period of time in the early phase (1s Plank’s time) in a super cooled stage. In the super cooled stage its density (3K) was then dominated by large positive constant vacuum energy and false vacuum. The super cooled stage was then followed by appearance of bubbles inflation. The temperature variation occurred in 3K cosmological background imprinted some 10~35 second in pre inflationary stage and grand unified theory happened there with generation of trillions and trillions degrees of temperature. As per old inflationary theory of Big Bang, there appeared bubbles of true vacuum and inflation blowed up a small casually connected region of the universe that was some thing much like the observable universe of today. This actually preceded large scale cosmological homogeneity & were reduced to an exponentially small number the present density of any magnetic monopoles, that according to many of particle physicist GUT& would have been produced in the pre-inflationary phase. In the old inflationary theory the universe must be homogeneous in all its direction and was isotropic. In old inflation theory, the super cooled stage was married by appearance of bubbles of the true vacuum, the broken symmetry of ground state. The model of old inflation theory however was later on abandoned, because the exponential expansion of any super cooled state always present the bubbles from merging and complicate the phase transition. More over in true sense universe is not totally homogenous but in small scale non homogenous too.

 The cosmic inflation theories of Big Bang postulates that our universe underwent a period of extremely rapid expansion shortly after the Big Bang. But how the transition from inflation to today’s more slowly expanding universe occurred not yet cleared before us. The present day universe would have began as multiple bubbles in the inflationary cosmos. One of such bubbles is probably our universe. But bubbles according to calculation were nothing but vacuum- matter- and energy, would never have developed under such conditions. There was an unusual phase transition in mixture of helium isotopes. Normal fluid changes their phases from gas to liquid to solid. Say following a bubble require similar to the one that theorists believed ended inflation. But the mixture of super fluid helium changed its properties in completely smooth uniform fashion? Applied to cosmology, the super fluid transition allowed the entire the entire universe to gently roll from inflation to present day condition. Helium -3 an isotope of helium with two protons and one neutron has thus a very unusual property. Helium -3 can undergoes the phenomenon of symmetry breaking. Normally pairs of atoms in the liquid phase have and angular momentum aligned in a random direction. But when cooled, the helium atoms would snap into a single alignment, spontaneously creating order of chaos. The symmetry breaking in early universe lead to creation of every forces of universe, except gravity. Kibbles hypothesis says that cooling of early universe as it expanded created all massive structures. Defects called cosmic strings that were the seed of large nets of  galaxies we see around us today.  String theory is controversial because it has evolved over past 2 ½ decade almost without references of experiment or observation and many views that it is more on super high branches of mathematics then reality of physics. Some version of String theory says possibility of electrical multiverse.  String theory predicts the existence of an enormous number of different “vacuum states,” or space time bubbles with different properties, such as physical constants or particle masses. Of an infinite number of bubbles, there could be 10500 different varieties. And though any underlying basic law of physics would remain the same, the bubbles could nonetheless exhibit vast physical diversity. Some of the string theory postulates that our universe may sit on #D membrane or brane suspended in a Higher dimensional space, the way a on a two dimensional shhet of paper sits in 3-D words. In such a string theory explain the end of inflationary period through collision of our Brane with another similar Brane in multi universe concept.
Now a  days, the multi- universe is a hot topic for discussion  at real-world scientific conferences. The question arises as to whether all these other universes are going to be like ours “or whether they will have different laws and the laws in our universe are in some sense special.  String theory, a favorite candidate (although unsubstantiated by experiment) for explaining all of physical laws of universe, suggest that the multiverse encompasses bubbles hosting various sorts of physics. String theory predicts the existence of an enormous number of different “vacuum states,” or space time bubbles with different properties, such as physical constants or particle masses. Of an infinite number of bubbles,  there could be 10500 different varieties. And though any underlying basic law of physics would remain the same, the bubbles could nonetheless exhibit vast physical diversity. Some of those bubbles would not have lasted long enough for life, inflating but then shrinking before any interesting chemistry commenced. Others would expand forever, as seems the case with the bubble that humans occupy. In some, the local laws of physics would have welcomed living things; others would have permitted none of the particles and forces that conspire to build atoms, molecules and metabolic mechanisms. It seems that universes come in all sizes and flavors, with the human bubble being the Goldilocks version, just right for life. In other words, if the multiverse offers multiple bubbles that permit life to evolve, humans would most likely live in an average bubble. If, for instance, you throw out all the bubbles that wouldn’t allow life anyway, and then calculate the average temperature of space in those that remain, humans should measure a cosmic temperature that is not very far off from that average. Somewhere in the cosmos, such a random mix of molecules has produced a brain identical to yours in every respect, neurons in identical configurations, with all your memories and perceptions

 OUR References_:.

1].Cronin JR, Cooper GW, Pizzarello S. Characteristics and formation of amino acids and hydroxy acids of the Murchison meteorite. Adv Space Res 15:91–97, 1995

2]. Cronin JR, Pizzarello S. Enantiomeric excesses in meteoritic amino acids. Science 275:951–955, 1997

3.] Pizzarello S, Cronin JR. Non-racemic amino acids in the Murray and Murchison meteorites. Geochim Cosmochim Acta 64:329–338, 2000

4.]Irvine WM. Extraterrestrial organic matter: a review. Orig Life Evol Biosph 28:365–383, 1998

5]Bernstein MP, Dworkin JP, Sandford SA, Cooper GW, Allamandola LJ. Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416:401–403, 2002

6.] Muñoz Caro GM, Meierhenrich UJ, Schutte WA, Barbier B, Arcones Segovia A, Rosenbauer H, Thiemann WH, Brack A, Greenberg JM. Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature 416:403–406, 2002

7] Cohen BA. Racemization of meteoritic amino acids. Icarus 145:272–281, 2000

8]. Engel MH, Macko SA. Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite. Nature 389:265–268, 1997

9]. Basiuk VA. Some observations on amino acid racemization under pyrolytic temperatures and inorganic oxide-catalyzed intermolecular condensation. Adv Space Res 27:335–340, 2001
10. ]Andrea T. Borchers, Paul A. Davis and M. Eric Gershwin.The Asymmetry of Existence: Do We Owe Our Existence to Cold Dark Matter and the Weak Force? Experimental Biology and Medicine 229:21-32 (2004
11.] Chyba CF, Thomas PJ, Brookshaw L, Sagan C. Cometary delivery of organic molecules to the early earth. Science 249:366–373, 1990.
12] Chyba C, Sagan C. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355:125–132, 1992.
13]Kasting JF. Earth’s early atmosphere. Science 259:920–926, 1993.[Abstract]
14] Whittet DCB. Is extraterrestrial organic matter relevant to the origin of life on Earth? Orig Life Evol Biosph 27:249–262, 1997
15] Raulin-Cerceau F, Maurel MC, Schneider J. From panspermia to bioastronomy, the evolution of the hypothesis of universal life. Orig Life Evol Biosph 28:597–612, 1998
16] Clark BC. Planetary interchange of bioactive material: probability factors and implications. Orig Life Evol Biosph 31:185–197, 2001
17] Mileikowsky C, Cucinotta FA, Wilson JW, Gladman B, Horneck G, Lindegren L, Melosh J, Rickman H, Valtonen M, Zheng JQ. Natural transfer of viable microbes in space. Icarus 145:391–427, 2000
18] Horneck G, Rettberg P, Reitz G, Wehner J, Eschweiler U, Strauch K, Panitz C, Starke V, Baumstark-Khan C. Protection of bacterial spores in space, a contribution to the discussion on panspermia. Orig Life Evol Biosph 31:527–547, 2001.
Copy RightCopy Right of this comment in  the Journal "Science News" belongs to Professor Pranab kumar Bhattacharya and his first degree relatives only as per copy right act & rules of Intellectual Property Right Rules 3D/107/1201 a,b/ RDF Copy Right rules/ SPARC copy Right rules-2006/ and Protect intellectual Property Right(PIP) copy right rules of USA-2012.Please do not Infringe and be enough careful for your own safety if you are not direct Blood relation to prof Pranab Kumar Bhattacharya  . No person, No NGOS [ except the authors& first degree relatives]  in the state of West Bengal or in any states of India or in any abroad countries are authorized to use this article, with any meaning full,  scientific sentences or with scientific and meaning full words laid out in this article either in the class room/  or in mass teaching programme including CME  or  in any form what so ever it is with any content of this article or while in writing any book or for his/her personal/ home use, or collective works or for any future Research or implementation as a policy matter or,[ except the authors ]or  by Xeroxing and distributing the article/ or by printing/saving/broadcasting the article from any website of internet services,displayed without proper copy right clearance from the authors or from his family members or future copy right owner by written forms. 

The cosmic Web, the seed of galaxies- are also made of Warm Intergalactic Medium(WHIM) and Dark energy?


Authors_:
 *** Mr Rupak Bhattacharya
-. Bsc(cal), Msc(JU), 7/51 Purbapalli, Sodepur, Dist 24 Parganas(north), Kol-110,West Bengal, India *Professor Pranab kumar Bhattacharya- MD(cal); FIC Path(Ind),  Professor and Head of department of  Pathology,  Calcutta School of Tropical Medicine, C.R avenue; Kolkata-73, West Bengal, India Ex professor and HOD Pathology RIO Ex Professor of IPGMER Kol-73 W.B, India *Miss Upasana Bhattacharya- Student, Mahamayatala, Garia, kol-86, only daughter of Prof.PK Bhattacharya ***Mr.Ritwik Bhattacharya B.com(cal), ***Mr
Soumyak Bhattacharya MBA  Student of residence7/51 Purbapalli, Sodepur, Dist 24 parganas(north) ,Kolkata-110,WestBengal, India , *** Miss Rupsa Bhattacharya **** Mrs. Dalia Mukherjee BA(hons) Cal, Swamiji Road, South Habra, 24 Parganas(north) West Bengal, India**** Miss Oindrila Mukherjee-Student ,**** Mr. Debasis Mukherjee Bsc(cal) of Residence Swamiji Road, South Habra, 24 Parganas(north), West Bengal, India   Runa Mitra  MA  BK MItra Palliative care center Barrackplore  24 Parganas(north), West Bengal, India           


 We all today know that our universe is made of voids, filaments, knots and sheets known as cosmic webs. Each point in space may be classified in one of four possible cosmic web types: voids, sheets, filaments and knots. Voids co-exist with a net of interconnected filaments. The entire observable universe is tangled in a web like structure, the frame work, on which the universe was once built up. We all today know it also that universe consisted of mysterious Dark energy (70%), Dark matter(25%) and that make up now 95% of the matter in the universe and which revel it self as gravity. Enormous filaments and blobs of dark matter in early universe condensed as universe condensed. Within the cosmic webs, all galaxies, stars, planets were created. The universe consists of billons and billions numbers of galaxies, some are larger, some smaller, some spiral disc shaped, like our Milky way, some non spiral, elliptical, some  dwarf galaxies, some dark galaxies  some as say ferst. More than 700,000 galaxies, whose observed Doppler colors indicate a significant red shift and are therefore presumed to be at large cosmological distances. Galaxies are however not dotted randomly through out universe but are generally either concentrated in groups or in clusters, which are connected again by multitude of filaments. These filamentary distributions of galaxies can be explained by vast quantities of dark matter enveloping galaxies and filamentary cold gas  flowing within them ,responsible for star formation  within them and the dark matter ISM is the dominant mass in the universe.
The most current theory of structures formation in the observable universe aims to explain, the structures are mostly homogeneous but slightly inhomogeneous too, Universe that we observe around us, 13.7 Gyr after the Big bang, as the outcome of the growth of the primordial density fluctuations of  quark gluon plasma that are observed as the temperature variations in the CMB. The formation of galaxies were possibly the most prominent visual aspect of the formation of cosmic structures that were shaped by the interplay next between the pull of the gravity and the expansion of space under influence of Dark energy.  Baryonic gas condensed in the gravitational wells that had already been established by the gravitational contraction of dark matter density perturbations. This condensation was followed by the formation of stars as filamentary cold gas  flowed within them ,responsible for star formation  within  galaxies and thus the emission of photons. All  galactic structures [galaxies over  passing time , clumped itself in a filamentary network]  through the gravitational instability, eventually formed a cosmic net work of voids, filaments, knots and sheets, because gravity was purely then attractive force, and regions of slightly higher density in the early universe accreted matter from their surroundings and grew more over dense, with time. In the cosmic web hypothesis, spherical structures appeared  probably first within filaments, growing in between them, followed by the great  walls [planar  structures] connecting the filaments of cosmic Web. These filaments were spreded millions of light years long and did constitute the skeleton of the early Universe: Galaxies gathered around them, and immense galaxy clusters were formed at their intersections, lurking like giant spiders waiting for more matter to accreted. Scientists and physicists are today struggling to determine how they swirl into existence. Although massive filamentary structures have been often observed at relatively small distances from us. The filament is located about 6.7 billion light-years away from us and extends over at least 60 million light-years even. As our  early universe evolved, the cosmic web gradually  sharpened more & more, under dense regions known as voids, empty material known as filaments and these materials subsequently flowed into over dense knots.[ In the cosmic web, under dense, almost empty regions of the universe, the voids, are delimited by  great wall-like sheets and very elongated filaments of matter, which sporadically intersected each other, gave rise to very high-density regions, the clusters. Galaxies, including the most massive ones, are found in large concentrations at such ’nodes’ of the web, the clusters; less massive galaxies are prominent in filaments; only very few galaxies inhabit the voids. Large scale structures in the distribution of galaxies were thought to have evolved through gravitational instabilities from small density fluctuations in the (largely homogeneous) early Universe. These structure of galaxies consisted of rich and poor clusters, were connected by filaments and sheets, with regions largely devoid of galaxies (voids) in between. Numerical simulations of the growth of initial density fluctuations through a nonlinear regime, motivated by the likely physics of the early Universe, also show a network of filaments and voids, but the origin of this picture of filaments as the dominant structure was not well understood. J. Richard Bond, Lev Kofman & Dmitry Pogosyan[1] showed in 1996 that the 'web' of filaments that defined the final state in these simulations was present  also in the initial density fluctuations; the pattern of the web was defined largely by the rare density peaks in the initial fluctuations, with the subsequent nonlinear evolution of the structure bringing the filamentary network into sharper relief. Applying these results to the observed galaxy distribution, they suggested that 'superclusters' were filamentary cluster–cluster bridges, and we predict that the most pronounced filaments will be found between clusters of galaxies that are aligned with each other and close together.
[ All sky high resolution map of the microwave light emitted only380’000 years after the big bang and detected by the WMAP satellite. Colours correspond to temperature variations with amplitude of 105 around the2.7K black body spectrum. (Image courtesy of the NASA / WMAP Science Team]


 Cosmic web  even in dwarf  and local group galaxies-: The near by filaments of the cosmic web connected also our local group of galaxies to large scale cosmic web and computer simulation model reveal that these filaments should channel a steady rain of pristine dwarf galaxies which are  too composed of dark matter into the local environment. Because filaments fall into them, also in firm large distances and accrete over a large fraction of the age of universe. These dwarf galaxies that are in process of arriving today can be expected to exhibit very large speed gas is also conveyed into galaxies along the filaments but because of presence  of gravitational forces this is rapidly slowed down, first shock heating and then condensing into clouds that fall into the center of gravitational well and contribute to build up gaseous disk component of galaxies. Cloud of active hydrogen known as high velocity cloud surround so our milky way and andromeda galaxies . Hence both large galaxies within local group appear to be continuously accreting gas fed to them from the cosmic web

The COBE (Cosmic Background Explorer Study) could detect small anisotropy, subsequently mapped in sharp detailed by WMAP (Wilkinson Microwave Anisotropy Probe) imprinted on the cosmic Microwave Back Ground (CMB) when universe was 3, 80,000 years old. COBE study fueled the model of growth structure universe and mini scale fluctuations in very early universe. The fact, very little is known about the energy and Mass of the Universe, within the frame work of Standard cosmological model. 95% of the universe ( Ω the mass density of the universe divided by the Critical density for closed universe) is corporated primarily of Dark energy (72%) and Dark Matter(23%) and only 5% is the detectable matter As baryons [most of which is hydrogen and helium], - the protons, atomic nuclei that constitute of ordinary matter, galaxies, Stars, planets, Planetismals, all comets, all planets, all living and dead trees, all animals and ourselves and all the materials we see,  The remaining 95% matter is mysterious in nature. The dark energy is assumed to be uniform, but the normal and dark matter are not.. The balance between dark matter and dark energy determines both how the universe expands and how regions of unusually high or low matter density evolved with time.  We can, should detect and measure it in physical state.  From studies of Quasars we know that clouds of baryons were present in the early universe about 4 billions years ago(red shift Z≈ 2) in the form of Photo Ionized diffuse high speed intergalactic gas as told just in previous paragraph and that accounted 3/4th of total baryonic mass in the universe. When nucleon synthesis happened with observed light elements at Z>2,Ωb>3.5%, 75% estimated baryons mass were involved. These clouds of Photo ionized intergalactic gas became more and more sparse as time moved towards present and structures like galaxies, galaxy groups, galaxy clusters started to be assembled, only a small fraction of the baryons that were present in Intergalactic medium(ISM) at red shift Z>2 are found in stars, cold or warm ISM hot inter cluster gas and residual photo ionized inter galactic medium and it is estimated that 50% of baryon mass is still missing. Most of the baryons in the local universe are also missing in that they are not in galaxies or in the previously detected gaseous phases.  RUpak Bhattacharya and Pranab Bhattacharya suggested that these missing baryons are so predicted may be in a moderately hot phase, 1E5 to 1E7 K, largely in the form of giant cosmic filaments that connect the denser virialized clusters and groups of galaxies. These filaments can be detected through absorption lines they produce in the spectra of background AGNs. Models show that the highest covering fraction of such filaments occurs in super clusters and the archive has two AGNs projected behind superclusters, both of which show absorption systems (in LyalphaLybetaOVI) at the super cluster red shift.

Question to Be solved yet
 The question  still to be solved as per authors, is how the large-scale cosmic environment of a CDM universe affected the internal properties of dark matter haloes and of the baryonic galaxies, they hosted during their formation and the subsequent billion years of cosmic evolution?.
Unlike the ‘‘baryonic’ matter (neglecting the real fact that there are also leptons that, however, contributed very negligible mass of universe), dark matter does not interact appreciably in any other way than through gravity —the weakest but only real long-range force among the four fundamental forces that govern the laws of universe. The best candidates for dark matter is probably  till date so far  is Cold Dark Matter(CDM), a kind of dark matter that has non-relativistic energies already at very early times and thus led to a bottom-up theory of galaxy structures formation in the early universe in COBE. Dark energy is on the other hand required to explain the observed accelerated expansion of space time (or in other way, equivalently, the weakening of gravity on very large scales and responsible for the expansion of the universe). Baryonic matter thus appeared to be a subdominant component that, while making up all the visible objects in the Universe, is not the most important ingredient in the attempt to understand the structure of the Universe.

[The highly inhomogeneous universe in 13.7 Gyr, all sky distribution of infrared sources (mostly galaxies) from the Two Micron All Sky Survey (2MASS) in the nearby Universe. The filamentary nature of the cosmic web is clearly visible. (Atlas Image courtesy of 2MASS/UMass/IPAC-Caltech/NASA/NSF).]


 N body Simulations study of Cosmic Web
 This cosmic web is the large-scale environment, in which galaxies formed and evolved and its existence had been established in large red shift surveys(z ≈ 2)of many hundred thousand galaxies over the last decades. Since dark matter interacts only gravitationally, it is thus relatively easy to model and computationally affordable. For many years, the numerical study of cosmic structures formation had therefore been focused on the realm of N-body simulations[Simulations that use a particle discretisation of the phase-space are known as N-body simulations. In these simulations, the phase-space density f(x, p, t) is discretized with massive particles and evolved according to the collision less limit of the Boltzmann equation, Thus, in the N-body method, the initial phase space is sampled with particles representing a small sub volume of the full 6-dimensional phase space. Each one of these particles is then evolved in a self-consistent way, fulfilling Liouville’s theorem (cf. e.g. Hockney & Eastwood, 1981). The numerical evolution thus requires two steps: (1) a gravity solver, to compute the particle accelerations, and (2) a time integrator, to update particle positions and momentum.]i.e. the Vlasov equation, under self-gravity]: which have had a huge success in showing that the spatial distribution of gravitationally collapsed structures — the dark matter haloes — is highly compatible with the observed distribution of galaxies. Dark matter haloes are connected to each other by large-scale filamentary structures. Cold gas flowing within this ‘cosmic web’ is believed to be an important source of fuel for galaxy and star formation at high red shift.  These simulations are still giving important insights into the detailed aspects of spatial clustering, mass distribution and even internal properties of galaxies through additional semi-analytic models that attempt to relate the properties of galaxies to those of the dark matter haloes in which they are embedded. The physics of baryonic matter is in contrast very complex and computationally expensive. However, it is baryonic galaxies that we see and use to constrain our cosmological theories to reproduce the one Universe in which we live. Including baryonic matter in our simulations of the universe is a challenging necessity to bring our understanding of structure formation to the next level. Only rather recently, the huge growth in available computer power has opened the spectacular possibility to study the condensation of the baryonic gas component into galaxies in cosmological simulations. Gas is able to radioactively cool and thus settles in the centers of the dark matter haloes. ’Sub-grid’ models capture the collapse of gas clumps below the resolution limit, making it possible to simulate the formation of stars. The simulated disk galaxies thus consist of a dark matter halo filled with hot gas, a cold gaseous disk and a stellar disk. The quest has indeed started to use such hydrodynamic cosmological simulations to further our detailed understanding of the formation and evolution of galaxies and structure in the universe.
From the point of view of cosmology, the vacuum or voids appears to have an energy density, which may be called “dark energy” or the “cosmological constant” From a particle physics viewpoint, the vacuum is also permeated by a “Higgs Field” - named after physicist Peter Higgs,

Since 2010 , many important  studies across the world,  showed that the main constituents of the universe , across 90 percent of its history, from the formation and evolution of structures such as galaxies, clusters of galaxies, and the "cosmic web” of intergalactic matter, to the stars, gas, dust, super massive black holes, and dark matter of which they are composed. These elements are coupled in a complicated evolutionary progression as matter accreted into galaxies, stars form and evolve, black holes grew, supernovae and active galactic nuclei expelled matter and energy into the intergalactic medium (IGM), and galaxies collide and merge. There  remained four questions  to be solved yet ,form the focus for research in the coming decade. The questions are: (1) How do cosmic structures form and evolve? (2) How do baryons cycle in and out of galaxies, and what do they do while they are there? (3) How do black holes grow, radiate, and influence their surroundings? (4) What were the first objects to light up the universe and when did they do it?
 

Simulations based on the standard cosmological model, as shown here, indicate that on very large distance scales, galaxies should be uniformly distributed. But observations show a clumpier distribution than expected. (The length bar represents about 2.3 billion light years. Credit: Courtesy of Volker Springel/Max-Planck-Institute for Astrophysics, Garching, Germany
In the modern hierarchical theories of galaxies structure formation,  It is considered that rich clusters of galaxies formed at the vertices of a web like distribution of matter, with filaments emanating from them to large distances and with smaller objects forming and draining in along these filaments. The amount of mass contained in structures near the clusters can be comparable to the collapsed mass of the cluster itself. As the lensing kernel is quite broad along the line of sight around cluster lenses with typical red shifts zl=0.5, structures many mega parsecs away from the cluster are essentially at the same location as the cluster itself, when considering their effect on the cluster's weak lensing signal.  When  large-scale numerical simulations of structure formation in a Λ-dominated cold dark matter model  was used to quantify the effect that large-scale structure near clusters has upon the cluster masses deduced from weak lensing analysis. A correction for the scatter in possible observed lensing masses should be included when interpreting mass functions from weak lensing surveys

 It was in fact Jerome Drexler, an applied armature physicist who hypothesized and discovered  the  relativistic-baryon dark matter in early part of 2002 and  the dark matters  was considered to be engaged in galaxy formation.  But Drexler’s hypothesis of relativistic dark baryons, would imply that the Dark matter  cannot clump on galaxy scales since they are relativistic.  The alternate hypothesis might  be that Relativistic-baryons entered the universe at the time of the Big bang as a radial outward dispersion of very high energy relativistic charged particles, having low entropy. Because of their very low entropy, the big bang could satisfy the Second Law of Thermodynamics. The initial very high energies of the big-bang relativistic baryons would correspond to the estimated initial temperatures in the current big bang theories. Actually, relativistic-baryon dark matter forms into long large filaments that can create galaxy clusters, galaxies, and stars, but only after those dark matter filaments collide with other similar long large dark matter filaments(http://www.nature.com/nature/journal/v435/n7042/fig_tab/435572a_F1.html what drexler recenly told[2] New Releases from website from NASA/Harvard, entitled “Motions in nearby galaxy cluster reveal presence of hidden superstructure,” regarding Chandra x-ray images of the Fornax cluster makes the significant statement: “Astronomers think that most of the matter in the universe is concentrated in long large filaments of dark matter [now called the “cosmic web”] and galaxy clusters are formed where these filaments intersect[/collide].” [2] http://www.nasa.gov/centers/marshall/news/news/releases/2004/04-231.html) according to the 2004 NASA/Harvard/Columbia University team, relativistic-baryon dark matter does not form galaxy clusters or galaxies until after the dark matter filaments intersect/collide. These collisions slow the relativistic protons and helium nuclei and also create pions and muons, which decay into electrons. The created electrons then transform the slowed protons and helium nuclei into hydrogen and helium atoms, the basic ingredients of galaxies and stars. Thus, these remnants of the dark-matter-filament collisions are ideal for forming galaxies, galaxy clusters, and stars.
 Warm matter In formation of galaxies and cosmic Web?
The most accepted model of cosmology structure formation is so till date CDM model including the dark energy,  or from that particle universe evolved as baryons in diffuse intergalactic medium accelerated towards the site of formation of such structures under influence of gravity and shocks and that heats  trillions of Kelvin temperature.   The question then remains What is  hat Dark energy? If from dark matter, What is dark matter? It is distinct from  Dark energy? How that matter organized and how is cosmic web organized? How galaxies formed in it? Are the dark energy the zero mass particles in Higgs fields and photon that was emitted later with formation of stars is condensation of zero mass (mass less particles), Rupak Bhattacharya and Professor  Pranab kumar Bhattacharya suggested? Are they missing baryons? Is it possible that the missing baryons may be concentrated into those filamentary cosmic web structures and they are hot intergalactic medium(WHIM)?The distribution of baryons beyond galaxies  thus may be described. The majority of the baryons, which represent 4% of the cosmic mass and energy budget, lie far from individual galaxies in the diffuse intergalactic medium (IGM). Many of these baryons may be in a warm phase that can be probed by quasar absorption in the Lyman-α line of hydrogen. The mature field of quasar spectroscopy can diagnose the location, physical state, metallicity, and general geometry of this gas, which is called the “cosmic web.” The remainder of the gas is kept very hot by in fall and shocks and is mostly in higher density regions such as filaments, groups and clusters. The hot gas is only detectable via X-rays and the absorption of highly ionized species of heavy elements. The baryons in low density regions of space are excellent tracers of underlying dark matter. The evolution of the cosmic web indicates where to look for the baryons in collapsed objects but the overall inefficiency of galaxy formation has conspired to keep most baryons dark

Scientists think dark energy is a form of repulsive gravity that now dominates the universe, although they have no clear picture of what it actually is. Understanding the nature of dark energy is one of the biggest problems in science. Possibilities include the cosmological constant, which is equivalent to the energy of empty space. Other possibilities include a modification in general relativity on the largest scales, or a more general physical field. Vikhlinin and his colleagues used Chandra to observe the hot gas in dozens of galaxy clusters, which are the largest collapsed objects in the universe. Some of these clusters are relatively close and others are more than halfway across the universe. increase in mass of the galaxy clusters over time aligns with a universe dominated by dark energy The study strengthens the evidence that dark energy is the cosmological constant. Although it is the leading candidate to explain dark energy, theoretical work suggests it should be about 10 raised to the power of 120 times larger than observed. Therefore, alternatives to general relativity, such as theories involving hidden dimensions, are being explored. These results have consequences for predicting the ultimate fate of the universe. If dark energy is explained by the cosmological constant, the expansion of the universe will continue to accelerate, and the Milky Way and its neighbor galaxy, Andromeda, never will merge with the Virgo cluster. In that case, about a hundred billion years from now, all other galaxies ultimately would disappear from the Milky Way's view and, eventually, the local superclusters of galaxies also would disintegrate.

Reference
1] J. Richard Bond*, Lev Kofman & Dmitry Pogosyan How filaments of galaxies are woven into the cosmic web Nature 380, 603 - 606 (18 April 1996); doi:10.1038/380603a0; 1996
2] Jerome Drexler”Relativistic-Baryon Dark Matter Utilizes Cosmic Web Collisions to Create Hydrogen and Helium Atoms Discovering Dark matter Cosmology” in website Jerome Drexler Discovering Dark matter cosmology
(http://www.nature.com/nature/journal/v435/n7042/fig_tab/435572a_F1.html at Nature News
http://www.bautforum.com/showthread.php/117579-The-cosmic-Web-the-seed-of-galaxies-are-made-of-Warm-Intergalactic-Medium(WHIM)-an  -discussion at BAD Astronomy and Universe today forum



Copy RightCopy Right of this  thread discussion in forum  BAD Astronomy or Cosmoquest Forum / published in Science Blogs or published comment in Nature News belongs to Professor Pranab kumar Bhattacharya and his first degree relatives only as per copy right act & rules of Intellectual Property Right Rules 3D/107/1201 a,b/ RDF Copy Right rules/ SPARC copy Right rules-2006/ and Protect intellectual Property Right(PIP) copy right rules of USA-2012.Please do not Infringe and be enough careful for your own safety if you are not  in direct Blood relation to prof Pranab Kumar Bhattacharya  . No person, No NGOS [ except the authors& first degree relatives]  in the state of West Bengal or in any states of India or in any abroad countries are authorized to use this article, with any meaning full,  scientific sentences or with scientific and meaning full words laid out in this article either in the class room/  or in mass teaching programme including CME  or  in any form what so ever it is with any content of this article or while in writing any book or for his/her personal/ home use, or collective works or for any future Research or implementation as a policy matter or,[ except the authors ]or  by Xeroxing and distributing the article/ or by printing/saving/broadcasting the article from any website of internet services,displayed without proper copy right clearance from the authors or from his family members or future copy right owner by written forms. 
 This Paper was sent to following journals  and Comments of Editors are enclosed
 1] Journal of Theoretical Physics